Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure.

نویسندگان

  • Mohammadreza Mehdizadeh
  • Hong Weng
  • Dipendra Gyawali
  • Liping Tang
  • Jian Yang
چکیده

The existing surgical adhesives are not ideal for wet tissue adhesion required in many surgeries such as those for internal organs. Developing surgical adhesives with strong wet tissue adhesion, controlled degradability and mechanical properties, and excellent biocompatibility has been a significant challenge. Herein, learning from nature, we report a one-step synthesis of a family of injectable citrate-based mussel-inspired bioadhesives (iCMBAs) for surgical use. Within the formulations investigated, iCMBAs showed 2.5-8.0 folds stronger wet tissue adhesion strength over the clinically used fibrin glue, demonstrated controlled degradability and tissue-like elastomeric mechanical properties, and exhibited excellent cyto/tissue-compatibility both in vitro and in vivo. iCMBAs were able to stop bleeding instantly and suturelessly, and close wounds (2 cm long×0.5 cm deep) created on the back of Sprague-Dawley rats, which is impossible when using existing gold standard, fibrin glue, due to its weak wet tissue adhesion strength. Equally important, the new bioadhesives facilitate wound healing, and are completely degraded and absorbed without eliciting significant inflammatory response. Our results support that iCMBA technology is highly translational and could have broad impact on surgeries where surgical tissue adhesives, sealants, and hemostatic agents are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives.

Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-ba...

متن کامل

Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives.

For the first time, a convenient copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry) was successfully introduced into injectable citrate-based mussel-inspired bioadhesives (iCMBAs, iCs) to improve both cohesive and wet adhesive strengths and elongate the degradation time, providing numerous advantages in surgical applications. The major challenge in developing such adhesives wa...

متن کامل

Development of tannin-inspired antimicrobial bioadhesives.

Tissue adhesives play an important role in surgery to close wounds, seal tissues, and stop bleeding, but existing adhesives are costly, cytotoxic, or bond weakly to tissue. Inspired by the water-resistant adhesion of plant-derived tannins, we herein report a new family of bioadhesives derived from a facile, one-step Michael addition of tannic acid and gelatin under oxidizing conditions and cros...

متن کامل

Development of Injectable Citrate-Based Bioadhesive Bone Implants.

Injectable bone implants have been widely used in bone tissue repairs including the treatment of comminuted bone fractures (CBF). However, most injectable bone implants are not suitable for the treatment of CBF due to their weak tissue adhesion strengths and minimal osteoinduction. Citrate has been recently reported to promote bone formation through enhanced bioceramic integration and osteoindu...

متن کامل

Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing.

Hydrogel-based bioadhesives have emerged as alternatives for sutureless wound closure, since they can mimic the composition and physicochemical properties of the extracellular matrix. However, they are often associated with poor mechanical properties, low adhesion to native tissues, and lack of antimicrobial properties. Herein, a new sprayable, elastic, and biocompatible composite hydrogel, wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 33 32  شماره 

صفحات  -

تاریخ انتشار 2012